Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature
نویسندگان
چکیده
منابع مشابه
Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature
We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish to maximize a nondecreasing submodular function or minimize a nonincreasing supermodular function in the setting of bounded total curvature c. In the case of submodular maximization with curvature ...
متن کاملOptimal Pricing for Submodular Valuations with Bounded Curvature
The optimal pricing problem is a fundamental problem that arises in combinatorial auctions. Suppose that there is one seller who has indivisible items and multiple buyers who want to purchase a combination of the items. The seller wants to sell his items for the highest possible prices, and each buyer wants to maximize his utility (i.e., valuation minus payment) as long as his payment does not ...
متن کاملSubmodular Functions: Optimization and Approximation
Submodular functions are discrete analogue of convex functions, arising in various fields of applied mathematics including game theory, information theory, and queueing theory. This survey aims at providing an overview on fundamental properties of submodular functions and recent algorithmic developments of their optimization and approximation. For submodular function minimization, the ellipsoid...
متن کاملCurvature and Optimal Algorithms for Learning and Minimizing Submodular Functions
We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAC-like setting [28]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the “curvature” of the submodular function, and provide lower and upper bounds that refine...
متن کاملA Submodular-supermodular Procedure with Applications to Discriminative Structure Learning
In this paper, we present an algorithm for minimizing the difference between two submodular functions using a variational framework which is based on (an extension of) the concave-convex procedure [17]. Because several commonly used metrics in machine learning, like mutual information and conditional mutual information, are submodular, the problem of minimizing the difference of two submodular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2017
ISSN: 0364-765X,1526-5471
DOI: 10.1287/moor.2016.0842